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Kernel-Based Learning From Both Qualitative And
Quantitative Labels :

Application To Prostate Cancer Diagnosis Based On
Multiparametric MR Imaging

Émilie Niaf, Rémi Flamary, Olivier Rouvière, Carole Lartizien, and Stéphane Canu

Abstract—Building an accurate training database is challeng-
ing in supervised classification. For instance, in medical imaging,
radiologists often delineate malignant and benign tissues without
access to the histological ground truth, leading to uncertain
datasets. This paper addresses the pattern classification problem
arising when available target data include some uncertainty
information. Target data considered here are both qualitative
(a class label) or quantitative (an estimation of the posterior
probability). In this context, usual discriminative methods such
as support vector machine (SVM) fail either to learn a ro-
bust classifier or to predict accurate probability estimates. We
generalize the regular SVM by introducing a new formulation
of the learning problem to take into account class labels as
well as class probability estimates. This original reformulation
into a probabilistic SVM (P-SVM) can be efficiently solved
by adapting existing flexible SVM solvers. Furthermore, this
framework allows deriving a unique learned prediction function
for both decision and posterior probability estimation providing
qualitative and quantitative predictions. The method is first tested
on synthetic datasets to evaluate its properties as compared with
the classical SVM and Fuzzy-SVM. It is then evaluated on a
clinical dataset of multiparametric prostate magnetic resonance
(mpMR) images to assess its performances in discriminating
benign from malignant tissues. It is shown to outperform clas-
sical SVM in terms of probability predictions and classification
performances, and demonstrates its potential for the design of
an efficient computer-aided decision (CAD) systems for prostate
cancer diagnosis based on multiparametric MR imaging.

Index Terms—computer-assisted decision system, medical
imaging, multiparametric magnetic resonance imaging, machine
learning, support vector machines, maximal margin algorithm,
uncertain labels.

I. INTRODUCTION

Image classification remains a major challenge to the
computer vision community in various application domains,
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mail: remi.flamary@unice.fr).
Olivier Rouvière is with INSERM, U1032, LabTau, Lyon, F-69003, France;
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including biomedical imaging [1], web image and video search
[2], industrial visual inspection, biometry, and remote sensing
[3], [4] to name but a few. Image classification aims at
assigning to each pixel, or to each region of interest (ROI)
extracted from the image, a label associated with a class of
object that can possibly be present in the analyzed scene. More
particularly, supervised pattern recognition approaches consist
in learning a classification model based on a training dataset
for which the class belonging, usually referred to as the ground
truth, is known and can thus be used to infer discriminative
rules. However, in most of real problems, training datasets
are doomed to contain classification errors or uncertainties
even when data is labeled by experts. For instance, in medical
imaging, radiologists often have to outline what they think
are malignant tissues over medical images without access to
the reference histopathologic information (E.g. for prostate
cancer imaging, [5], [6], [7], [8]). It is thus a common use in
clinical practice to affect a malignancy suspicion score to the
outlined targets, using different scales such as the Likert scale
[9]. These scores, however, are usually converted into binary
class variables prior to the classification step by setting an
arbitrary threshold. This conversion has two negative effects on
the data : first, uncertainty information that may be of interest
for probability estimation is lost, second, classification noise
(badly labeled examples) is added to the data leading to non
robust classifiers [10]. We propose to deal with these learning
samples uncertainties by directly using probabilistic labels in
the learning stage so as to avoid discarding uncertain data
while constructing a robust classifier.

This study extends the widely used support vector machine
(SVM) two-class classification problem [11]. This supervised
classification algorithm is based on the maximum margin
principle. It has good generalization ability, is very effective
in high dimensional feature space and the learning phase
associated with the minimization of a convex cost function
guarantees the uniqueness of the solution. In this framework,
relatively little work has discussed means for considering
uncertain or probabilistic dataset as learning samples. Some
authors have proposed to mix uncertainties together with clas-
sification through a weighting scheme [11], [12]. Other studies
focused on learning probabilities after discrimination using an
additional mapping algorithm [13], [14]. These mappings are
indeed performed a posteriori on a discriminant prediction
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Fig. 1: Examples of discrimination functions learned on prob-
abilistic datasets via SVM and P-SVM. (a) training dataset
spatial distribution along with the associated class probability
pi = P(li = 1|X = xi). (b) learned functions for the regular
SVM (in green) and the P-SVM (in orange) while consider-
ing binary and probabilistic class labels li respectively. The
regular SVM separating hyperplane is impacted by the yellow
(pi=0.55) and green (pi=0.45) points which are considered
as ’+1’ and ’-1’ examples respectively; the P-SVM algorithm
accounts for the low class probability of these two examples
(pi ' 0.5), thus resulting in a more robust discriminative
hyperplan, close to the Bayes decision (in black).

function. We believe that including them directly in a unique
learning process will improve the classification performances
as well as the posterior probability prediction.

Our main contribution is a SVM inspired formulation of
the learning problem allowing to take into account class
labels through a hinge loss cost function as well as class
probability estimates using ε-insensitive cost function together
with a minimum norm (maximum margin) objective. This
formulation, referred to as Probabilistic SVM (P-SVM) in the
following, shows a dual form leading to a quadratic problem
similar to the classical SVM formulation, and allows the
use of a representer theorem and associated kernel. It hence
can be efficiently solved by adapting existing flexible SVM
solvers. As illustrated in Fig. 1, training data points with
uncertain class probability pi (0.4 < pi < 0.6 for instance)
can have a dramatic impact on the decision function (green
line) if used as certain after thresholding (green and yellow
samples assigned to class ’+1’ and ’-1’ respectively). A
classifier that takes this uncertainty into account will allow
the discriminant hyperplane (orange line) to pass near those
uncertain samples (pi ' 0.5), thus leading to a decision closer
to the Bayes decision (black line).

This paper details the basis of the P-SVM formalism that
was first introduced in our preliminary work [15], and general-
ize the optimization problem by introducing new parameters;
we also propose an extensive evaluation study against state-
of-the-art methods on synthetic datasets and evaluate the
relevance of the proposed algorithm on a clinical dataset, using
radiologists’ scores as probabilitic inputs. The paper proceeds
as follows. In section II, we briefly review some basics on
SVM and present a state-of-the-art of related studies focusing
on posterior class probability prediction and accounting for
data uncertainty within this framework. In sections III, we

define the P-SVM, our contribution to handle both binary
and probabilistic labels simultaneously, and discuss the as-
sociated optimization problem. In section IV, we compare the
performances of the P-SVM to two state-of-the-art methods
over different simulated datasets. Finally, in section V, we
demonstrate the potential of this method in the clinical context
of prostate cancer diagnosis based on multiparametric MR
(mpMR) images.

II. BACKGROUND

In this section we shortly review some basics on support
vector machine as well as some previous works on incorpo-
rating class probability or uncertainty in this framework.

A. Support vector machines for classification

Suppose that we are given a training dataset of n samples
{(x1, y1), . . . , (xn, yn)} ⊂ X×Y , where X denotes the feature
space (in the following practical examples, X = Rd where d
is the number of features per sample) and Y represents the
two-class labelling, Y = {−1,+1}. The SVM, introduced by
Vapnik [16], aims at constructing a separating hyperplan, of
the form :

{x ∈ X |w>x + b = 0}, (1)

maximizing the margin between the data of the two classes.
The associated pattern recognition problem is defined as :

min
w∈Rd,b,ξi∈R

1

2
‖w‖2 + C

n∑
i=1

ξi,

subject to

yi(w>xi + b) ≥ 1− ξi, i = 1, . . . , n

0 ≤ ξi, i = 1, . . . , n

(2a)

(2b)
(2c)

which combines a minimum norm (maximum margin) ob-
jective function (2a) and good classification constraints (2b).
Slack variables ξi ≥ 0 (2c) correspond to the distance to the
margin of possibly misclassified samples xi. Parameter C (2a)
is the associated cost coefficient that weights the classification
error.
This optimization problem can be expressed in its dual form,
resulting in the following expression :

max
α∈R
−1

2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj +

n∑
i=1

αi

subject to
0 ≤ αi ≤ C i = 1, . . . , n
n∑
i=1

αiyi = 0

(3)

where coefficients αi are the Lagrange multipliers.
The classification of a test vector x ∈ X is then performed
by computing sign(f(x)) where f(x) represents the signed
distance to the margin and can be expressed as :

f(x) = w>x + b =
∑
i=1...n

αiyix>i x + b. (4)
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Note that examples located on or inside the constructed
margin, for which α 6= 0, are called ”support vectors”.

When the classification problem is nonlinear, SVM can be
easily adapted thanks to the “kernel trick”. The basic idea is
to introduce a nonlinear mapping function φ : x −→ φ(x)
that maps the data to a higher dimensional space H, where
the data is linearly separable. Then, expression (4) becomes :

f(x) =
∑
i=1...n

αiyi〈φ(xi), φ(x)〉H + b. (5)

Note that when the problem is solved in its dual form,
only the scalar product 〈φ(xi), φ(xj)〉H has to be computed.
In practice, we do not need to define explicitly the map-
ping function φ but only the kernel function defined as
k(xi, xj) = 〈φ(xi), φ(xj)〉H. The kernel k must be a positive
definite function satisfying Mercer’s condition and H is the
associated Reproducing Kernel Hilbert Space (RKHS). This
is particularly interesting as it allows the use of closed form
kernel such as the Gaussian kernel. When using kernels the
prediction function (5) can be rewritten as :

f(x) =
∑
i=1...n

αiyik(xi, x) + b. (6)

B. Related works
1) From discrimination to probability estimation: Classi-

cal SVM aims at constructing a discriminative uncalibrated
function f predicting a signed distance to the margin, and its
associated decision function sign(f). Nevertheless, in many
applications it is desirable to get an estimate of the posterior
probabilities for each class in addition to the classification.
This can be useful indeed to evaluate the confidence associated
to the prediction. Given a measurement x the goal is to
estimate :

P(class|input) = P(Y = yi|X = x) = p, where yi = ±1.
(7)

For a recent survey on this issue see for instance [17] with
included references. We just give some details on the methods
related with our work.

The approach proposed by Platt [13] to estimate posterior
class probabilities using SVM is the most popular method. It is
a parametric approach to retrospectively transform the SVM
scores f to probabilities by using a sigmoid approximation
function ϕ : R 7→ [0, 1] such that :

P(Y = +1|X = x) = ϕA(f(x)) =
1

1 + exp(−Af(x))
, (8)

where parameter A is obtained by minimizing the negative log-
likelihood function (cross-entropy) on a training or validation
set (gradient descent). Supplemental offset parameter B can
also be added in the exponential term and adjusted. But this
approach remains a heuristic.

To provide a formal framework, Grandvalet et al. [18],
shown that an interval-valued mapping from scores to prob-
abilities has to be use, thus providing a set of probabilities
compatible with each SVM score :

ϕ(f(x))− ε−(x) ≤ P(Y = +1|X = x) ≤ ϕ(f(x)) + ε+(x)
(9)

where ϕ is the sigmoid function and ε+ and ε− define
the tolerated interval. This interval mapping allows a better
understanding of the links between likelihood maximization
and SVM and has shown interest particularly on unbalanced
datasets.

Yet, this approach has been introduced as a post processing
to SVM outputs. We’ll see in our work how to include it right
from the beginning into the SVM optimization framework to
deal with both known labels and probabilities.

2) Incorporating labelling uncertainty into the SVM train-
ing step: Lin and Wang [12] were the first to define a Fuzzy
SVM (F-SVM), ie. a binary classifier capable of integrating
labelling uncertainty into the learning phase. Given a labeled
training data set of points (xi, yi)i=1...n and the associated
fuzzy membership measures 0 ≤ mi ≤ 1, i = 1 . . . n, they
proposed to rewrite the optimization problem as :

min
f∈H,ξ∈R

1

2
||f ||2 + C

∑
i

miξi, (10)

with the same constraints as in equation (2), thus ponderating
the misclassification cost with class uncertainty. Note that [3]
extended the previous approach by using both mi and 1−mi

in equation (10) for both +1 and −1 classes. A very similar
weighting procedure, taking advantage of the probabilistic
labelling, has been proposed, as an exercise, by Scholkopf
and Smola [11] (p. 223), with mi = |2pi − 1|.
This approach allows ponderating the influence of uncertain
examples on the margin construction, but they do not aim at
constructing a soft probabilistic output even less a probabilistic
prediction function.

III. PROBABILISTIC PROBLEM FORMULATION

We present a new formulation derived from the classi-
cal SVM two-class classification problem, which allows ac-
counting for uncertain labels during the training step while
constructing an accurate probabilistic discrimination function.
This approach is referred to as P-SVM in the following where
P stands for ”probabilistic”. We introduce the problem in a
linear context, but we can easily extend the formulation to
non-linearly separable datasets using kernels.
Let X be a feature space. We define (xi, li)i=1...m the training
dataset of input vectors (xi)i=1...m ∈ X along with their
corresponding labels (li)i=1...m, the latter of which being :
• class labels : li = yi ∈ {−1,+1} with i = 1 . . . n for the
n training samples that are assigned to any of the two
classes with certainty,

• real values : li = pi ∈ [0, 1] with i = n+ 1 . . .m for the
m − n training samples for which the class labelling is
more ambiguous.

Probability pi, associated to point xi, is an estimated condi-
tional probability for class +1 : pi = p(xi) = P(Yi = 1 | Xi =
xi).

We aim at constructing the optimal maximal margin hyper-
plane

{x ∈ X |f(x) = w>x + b = 0}

so as to efficiently predict :
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Fig. 2: Localisation constraints representation depending on
p. Localisation constraints for prediction f(x) are defined by
boundaries z+ et z−. They aim at maintaining predictions
between defined limits depending on p. The nearest to 0
or 1 (up to minimum distance η) label p is, the softest the
localisation constraint on f(x) is (→∞).

• class membership for binary labelled data (xi, yi)i=1...n

(in classification),
• conditional class probability for uncertain labelled data

(xi, pi)i=n+1...m (in regression).

Let η be an estimate of the uncertainty in the probabilistic
labelling. To avoid dealing with undefined cases, we constrain
labels {pi}i=n+1...m of samples {xi}i=n+1...m, to belong to
[η, 1-η], even if it means re-labelling data such that :

li =


yi= -1 if pi - η ≤ 0
yi= +1 if pi + η ≥ 1
pi otherwise.

Let xi be a sample of conditional class probability pi.
Following Platt’s formulation, we are looking for probability
predictions of the form ϕ(f(x)), where ϕ is the sigmoid
function (see (8)).
This additional regression problem on uncertain examples
consists in finding optimal f such that :

| ϕ(f(xi))− pi |< η, for i = n+ 1 . . .m

where ϕ(z) =
1

1 + e−Az
.

(11)

This is aimed at constraining the posterior class probability
prediction for point xi to remain within distance η of ϕ(f(xi)),
where parameter η represents the labelling precision [13], [18].

Condition (11) can be equivalently rewritten :

pi − η ≤ ϕ(f(xi)) ≤ pi + η,
⇐⇒ a.z−i ≤ f(xi) ≤ a.z+

i ,
(12)

with :

z±i =
1

a
ϕ−1(pi ± η) = ln(

1

pi ± η
− 1) and a = − 1

A
. (13)

Fig. 2 represents these probability prediction constraints.
A reasonable hypothesis following inequality (12) is to

consider that the boundaries of the tube defining probability
prediction constraints correspond to extreme cases where
f(xi) = w>xi + b = ±1. We then get : ϕ(f(xi)) = η for

the xi such that w>xi + b = −1 and ϕ(f(xi)) = 1− η for the
xi such that w>xi + b = +1, which, in both cases, leads to :

A = ln(
1

η
− 1). (14)

This hypothesis allows to set parameter A a priori but can be
judged arbitrary. In the following general problem, we thus
consider A (or equivalently a) as a scale parameter to learn.
We then can chose to learn A or to set it a priori.

We define the associated pattern recognition problem as :

min
w∈Rd,

b,a,ξi,ξ
−
i ,ξ

+
i ∈R

1

2
‖w‖2 + C

n∑
i=1

ξi

+ C̃

m∑
i=n+1

(ξ−i + ξ+
i ),

subject to

yi(w>xi + b) ≥ 1− ξi, i = 1...n

az−i − ξ
−
i ≤ w>xi + b ≤ az+

i + ξ+
i , i = n+ 1...m

0 ≤ ξi, i = 1...n

0 ≤ ξ−i and 0 ≤ ξ+
i , i = n+ 1...m

(15a)

(15b)

(15c)
(15d)

(15e)

This formulation consists in minimizing the complexity of
the model (15a) while forcing good classification (15b) and
good probability estimation (close to pi) (15c).
ξi, ξ−i , ξ+

i (15c, 15d) are slack variables measuring the
degree of misclassification/misprediction of the datum xi.
Parameters C and C̃ are predefined positive real numbers
controlling the relative weighting of classification and
regression performances. Obviously, if n = m, the problem
boils down to the classical SVM.

We can rewrite the primal problem (eq. 15) in its dual
form as described in Appendix VIII-A. Reformulated as a
quadratic problem, it can be solved using standard SVM
solvers software packages. The P-SVM code was implemented
within the SVM-KM Toolbox [19]. It is open-source and can
be downloaded on the project homepage http://remi.flamary.
com/soft/soft-svmuncertain.html.

Moreover, as introduced in section II-A, the primal and dual
formulations of the P-SVM problem can be easily generalized
to non-linearly separable data by introducing kernel functions.
This is detailed in Appendix VIII-B.

IV. EXPERIMENTS WITH SYNTHETIC DATASETS

In order to experimentally evaluate the proposed method for
handling uncertain labels in SVM classification, we simulate
different datasets described below. We compare the classifica-
tion performances and probabilistic predictions of the SVM,
F-SVM and P-SVM approaches.

In the standard SVM and the F-SVM approaches, prediction
outputs are distances to the margin (which are unbounded),
while the P-SVM formulation directly generates class proba-
bilities. In order to perform a fair comparison, we thus decided
to estimate the posterior class probabilities of the classical

http://remi.flamary.com/soft/soft-svmuncertain.html
http://remi.flamary.com/soft/soft-svmuncertain.html
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SVM and F-SVM outputs using Platt’s scaling algorithm [13].
Classification performances are evaluated by computing the
area under the ROC curve (AUC) and the accuracy (Acc).
Probability prediction performances are evaluated by comput-
ing the Kullback-Leibler distance (KL) (or relative entropy)
and the alignment error (ErrAl). Definitions of these different
metrics are given in Appendix VIII-C.
The performance of P-SVM are compared to that of the
standard SVM (+ Platt) and F-SVM (+Platt) based on paired
non-parametric sign tests performed on a collection of 100-
bootstrap resamples.

In these numerical examples, C = C̃ = 100 and a gaussian
radial basis function kernel of the form :

k : X × X → R

(u, v) 7→ k(u, v) = exp

(
−||u− v||

2

2σ2

)
,

is used, where parameter σ is set to 1.

A. Impact of one outlier sample

We simulate two gaussian data sets (nl=100 training points)
labelled ’+1’ and ’-1’ and arbitrarily generate a unique outlier
x located at quasi-equal distance from both centers, such that
P(Y = 1 | X = x) = 0.51.
We evaluate the impact of this point on the decision frontier
depending on its label l :

• class label : y = 1, since P(Y = 1 | X = x) > 0.5,
• probabilistic label : p = 0.51.

We train the P-SVM classifier on both datasets. Note that in the
first case, we are brought back to classical SVM with binary
labelled training samples.
Results are presented on Fig. 3. When label l equals ’+1’
(binary training dataset), the frontier is constructed so as to
minimize classification error and maximize the margin : the
outlier x then becomes a support vector on which relies the
position of frontier (Fig. 3a) which is largely deviated to the
dataset of class ’-1’. We thus loose the generalization power
of SVM.
On the contrary, the P-SVM approach takes advantage of the
probabilistic information learnt from probabilistic label l =
p = 0.51 of the outlier. This very uncertain sample (p ' 0.5)
lies on the separating frontier (Fig. 3b) while binary labelled
data are, from a ”maximum margin” point of view, separated
in an optimal way.

B. Probability estimation

We generate two unidimensional datasets, labelled ’+1’ and
’-1’, from normal distributions of variances σ2

−1= σ2
1=0.3 and

means µ−1=-0.5 and µ1=+0.5 (see Fig. 4a). Let (xli)i=1...nl

denotes the training dataset (nl=100) and (xti)i=1...nt the test
set (nt=1000). We compute, for each point xi, i = 1 . . . nl,

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−
1

−
1

−1

0

0

1

1

1

(a) Outlier labelled y=+1

−1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−
1

−
1

0

0

1

1

(b) Outlier labelled p=0.51

Fig. 3: Introduction of an outlier. We simulate two gaussian
datasets labelled ’-1’ (blue) and ’+1’ (red), to visualize the
position of the constructed P-SVM frontier (in black) and the
margins (in green) depending on label l : (a) l = +1, (b) l=
P(Y = 1 | X = x) = 0.51, with η = 0.1.

its true probability P(Yi = +1|xi) to belong to class ’+1’ :

P(Yi = +1|xi) =
P(xi|Yi = +1)

P(xi|Yi = +1) + P(xi|Yi = −1)

where P(xi|Yi = +1) = 1
σ
√

2π
exp(− 1

2 ( xi−µ1

σ )2)

and P(xi|Yi = −1) = 1
σ
√

2π
exp(− 1

2 ( xi−µ−1

σ )2).

(16)

From here on, learning data are labelled in three ways, as
follows :
• The regular SVM training dataset is obtained by setting

a threshold of 0.5 on the true probability pli = P(Y li =
+1|xli) for assigning class label yli associated to point
xli, for i = 1 . . . nl. This is what would be done in
practical cases when the data contains class membership
probabilities :

if pli > 0.5, then yli = +1,
if pli ≤ 0.5, then yli = −1.

(17)

This dataset (xli, y
l
i)i=1...nl is used to train the classical

SVM classifier. Following SVM classification, Platt’s
algorithm is used to transform SVM output distances to
class probability estimations.

• The P-SVM training dataset (xli, ŷli)i=1...nl is obtained as
follow. For i = 1 . . . nl,

if pli > 1− η, then ŷli = +1,
if pli < η, then ŷli = −1,

ŷli = pli otherwise.
(18)

If the probability values are sufficiently close to 0 or
1 (within a confidence/precision interval η), we admit
that they belong respectively to class ”-1” or ”+1”. This
probabilistic dataset (xli, ŷli)i=1...nl is used to train the
P-SVM algorithm.

• Finally, the dataset used to the train F-SVM algorithm is
of the form (xli, yli,ml

i)i=1...nl where ml
i = |2pli− 1| is a

weighting factor in the misclassfication cost, as described
in section II-B2.
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These three approaches are compared based on the test
set (xti)i=1...nt and using the true probabilities

(
P(Y ti =

+1|xti)
)
i=1...nt to estimate probability prediction errors.

Fig. 4b shows the probability predictions achieved by the
regular SVM and the F-SVM, coupled with Platt’s algorithm,
and P-SVM classifiers. Performances are improved with the
P-SVM classifier: the true probabilities (black) and P-SVM
estimations (red) are quasi-superimposed (KL=0.4) whereas
Platt’s estimations (blue and green) are less accurate (KL=11;
p < 0.001). This is also illustrated by the prediction error (L1)
computed on Fig. 4c.

Table I summarizes the results of the quantitative evaluation
on the nt = 1000 random test points. For each evaluation
criteria, best performances are highlighted in bold. The cor-
responding p-values for the comparison P-SVM versus others
are given in parenthesis and a superscript of star indicates
when P-SVM performs statistically better than others at the
5% significance level.
Classification performances (AUC and Acc) are either better
or equivalent for P-SVM than for SVM and F-SVM while
probability prediction errors (KL, ErrAl) are systematically
lower for P-SVM than those achieved for the classical SVM
and F-SVM (p<0.001).

TABLE I: Comparison of P-SVM, SVM+Platt and F-
SVM+Platt classification and prediction performances for
noiseless probability estimation problem. Illustrated on Fig.
4.

Algorithm P-SVM SVM (p-value) F-SVM (p-value)

AUC 1 1 (0.29) 1 (0.07)

Acc 1 0.99 (< 10−3) 0.99 (< 10−3)

KL 0.4* 11 (< 10−3) 11 (< 10−3)

ErrAl 1.10−5* 6.10−4 (< 10−3) 6.10−4 (< 10−3)

C. Noise robustness

We generate two 2D datasets, labelled ’+1’ and ’-1’, from
normal distributions of variances σ2

−1=σ2
1=0.7 and means µ−1

= (-0.3, -0.5) and µ1=(+0.3, +0.5). As in the previous experi-
ment, we compute class ’+1’ membership probability for each
point xl of the learning data set. We simulate classification
error by artificially adding a centered uniform noise δ of
amplitude 0.1 to the probabilities, such that for i = 1 . . . nl,

P̂(Yi = +1|xi) = P(Yi = 1|xi) + δi.

We then label the learning data following the same scheme as
described in (17) and (18). Fig. 5 shows the margin location
and probabilities estimations using the three methods over a
grid of values.

Classifiers are trained on nl = 100 noisy sample points
(δ = 0.1) and evaluated on nt = 1000 random test points. P-
SVM classification and probability estimations better correlate
with the ground truth (AccP-SVM = 99% , KLP-SVM = 13) than
SVM (AccSVM = 95%, KLSVM = 175; p<0.001). Contrary to P-
SVM which, by combining both classification and regression,
predicts good probabilities, SVM is more sensitive to the
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Fig. 4: Probability estimations comparison. Top plot (a) shows
the true probability distributions for classes ’-1’ (blue) and
’+1’ (red) (ground truth); the overlaying circles represent the
nt learning examples. Middle plot (b) shows the true poste-
rior probability (black) with SVM+Platt (blue), F-SVM+Platt
(green) and P-SVM (red) estimations overlaying. Lower plot
(c) shows the distance between true probabilities and estima-
tions.

classification noise of the input training samples and does not
converge any more to the Bayes rule as seen in [10]. This
is confirmed by the estimated classification performances and
prediction errors reported in Table II. As for F-SVM, if the
discrimination frontier is well located when compared to the
ground truth (as indicated by the good classification accuracy
AccF-SVM=0.99), there is a major scaling divergence in the
predicted probability maps (KLF-SVM = 123; p<0.001). Con-
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Fig. 5: Comparison of P-SVM, regular SVM+Platt and F-
SVM+Platt robustness to labelling noise. (a) True probability
distribution together with noisy learning data points, plotted
in blue (class ’-1’) and red (class ’+1’) circles. Probability es-
timations of (b) P-SVM, (c) SVM+Platt and (d) F-SVM+Platt
over a grid when trained on the noisy data points.

trary to P-SVM, F-SVM doesn’t use the probabilistic labels
to construct a probability prediction function. These uncertain
labels are only used as weighted factors in the classification
boundary construction. Thus, the predicted probabilities are
less accurate than for P-SVM. This is a major difference
with P-SVM since the posterior class probability conveys
information about the uncertainty measure regarding the class
prediction. Note that far from the nl learning data points
(top left, bottom right corners of Fig. 5), every probability
estimations are less accurate, this being directly linked to the
choice of a gaussian kernel.

TABLE II: Comparison of P-SVM, SVM+Platt and F-
SVM+Platt classification and prediction performances for
noisy probabilistic estimates. Illustrated on Fig. 5.

Algorithm P-SVM SVM (p-value) F-SVM (p-value)

AUC 1 0.99 (< 10−3) 1 (< 10−3)
Acc 0.99 0.95 (< 10−3) 0.99 (0.05)
KL 13* 175 (< 10−3) 123 (< 10−3)
ErrAl 5.10−3* 0.04 (< 10−3) 0.03 (< 10−3)
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Fig. 6: Evolution of P-SVM, SVM+Platt and F-SVM+Platt
prediction performances depending on noise amplitude δ (nl =
100, nt = 1000, drawing repeated 100 times).

Fig. 6 shows the impact of noise amplitude on the SVM, F-
SVM and P-SVM classification (Fig. 6a) and probability pre-
diction (Fig. 6b) performances. Values were averaged over 30
random repeated simulations. Even when noise increases, clas-
sification performances (respectively probability predictions
errors) of the P-SVM remain significantly higher (respectively
lower) than those of the classical SVM and the F-SVM.

Finally, we evaluate the impact of the training dataset proba-
bilistic labels proportion on the prediction performances of the
P-SVM. Fig. 7 shows the evolution of the classification and
probability predictions performance measures with increasing
number of probabilistic labels. Increasing the proportion of
probabilistic training samples improves both classification and
prediction performances.
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Fig. 7: Classification and probability prediction performances
of the P-SVM and F-SVM+Platt depending on the proportion
of probabilistic labels. Comparison to classical SVM+Platt
performances.

V. APPLICATION TO A CLINICAL DATASET

This section reports an experimental evaluation of our pro-
posed P-SVM algorithm over a clinical dataset. The targeted
task consists in discriminating benign from malignant regions
on mpMR images of prostate cancer patients. The same
metrics as in Section IV are used to compare P-SVM to the
regular SVM and the F-SVM.

A. Dataset description

The dataset consists in a series of mpMR images of 49
patients, including T2-weighted, dynamic contrast-enhanced
and diffusion-weighted imaging as illustrated on Fig. 8. A
total of n=350 regions of interest (ROI) were delineated on
the images and scored by four experts using a five-point
ordinal scale of confidence ranging from 0=surely benign to
1=surely malignant [9], thus with a discrete sampling interval
of ±0.125. All patients of this database underwent a prostatec-
tomy after the MR exams. The prostatectomy specimens were
analyzed a posteriori by an anatomopathologist thus providing
the histological ground truth as seen on Fig. 8d.

B. Experiments

In a previous study [20], we presented a computer-aided
diagnosis (CAD) scheme based on the combination of a
regular SVM algorithm and a set of discriminant statistical,
structural (gradients and Haralick’s attributes) and functional
features derived from the mpMR images.

This CAD system was trained on the series of 284 benign
and 66 cancer regions of interest that were labelled ’-1’ or
’+1’ based on the histological ground truth. Learning and
testing on this binary dataset led to AUC = 0.855 and Acc =
0.871.

In this study, we hypothesize that we do not have access
to the histological ground truth, since it is rarely available
in practice. The learning process is thus only based on the
qualitative degree of confidence returned by the radiologists

when analyzing MR images. We test whether this scoring
information can be used with P-SVM to obtain more reliable
predictions than when using a F-SVM or a regular SVM
trained on thresholded scores.

0.75/1
1/1

(a) T2-weighted (b) Apparent diffusion coefficient

(c) Dynamic contrast-enhanced

A

B

(d) histological slice

Fig. 8: Prostate MRI : (a) axial T2-weighted, (b) Apparent
Diffusion Coefficient and (c) Dynamic Contrast-Enhanced (af-
ter Gd-injection) MR images together with the corresponding
(d) histology slice. Histologically assessed cancers (A and B)
were outlined on MR images (scored 0.75 and 1 respectively)
during the blinded a priori MR analysis.

We propose to use the confidence scores of the expert
with the highest level of expertise to construct three distinct
datasets :
• The first one, (xi, yi)i=1...n, is the standard binary la-

belled dataset obtained from setting a threshold value of
0.5 on the confidence scores of the expert;

• The second one, (xi, ŷi)i=1...n, is a mixed dataset of bi-
nary labels and probability estimations constructed from
the expert’s confidence scores (pi)i=1...n, defined as in
(18);

• The third one, (xi, yi,mi)i=1...n, associate a class mem-
bership mi = |2pi − 1| to each of the binary labelled
example.

These three different learning datasets are used to train the
SVM, P-SVM and F-SVM classifiers respectively.
We then test the three predictive models obtained on two
different testing datasets :
• The first one corresponds to the set of 350 ROIs scored

by the expert and considering a threshold value of 0.5 for
labelling ROIs as cancer or benign;

• The second test set corresponds to the set of 350 ROIs
labelled as cancer or benign samples based on the
histological ground truth.

In this analysis, the labelling precision η introduced in (12)
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is set to the confidence interval value of 0.125.

We finally propose, in a second experiment, a refinement of
the formalism described in (12) by considering an adaptative
parameter ηi which reflects the scoring ”uncertainty” (or
the labelling precision) for each target i. This uncertainty
is derived from the standard deviation of the four experts’
scores. We choose ηi = σi, where σi is the standard deviation
of the scores attributed to target i. We estimate the conditional
probabilities pi as the average score values over all experts
for each target i. If experts agree, then ηi is small, whereas
on the contrary, if inter-reader variability is high, ηi is large
to account for uncertainty in the learning stage.

Given the limited size of the patient database, classifica-
tion performance was estimated using a leave-one-patient-
out cross-validation approach [20], thus avoiding training and
testing on the same data. As for the synthetic experiments,
we perform a bootstrap resampling to compute one-sided sign
tests of the difference in performances of the P-SVM versus
the two others approaches.

C. Results

Based on the results obtained in [20], we set parameters
σ = 25 and C = C̃ = 213. Tables III, IV, V and VI reports the
performances for the discrimination of benign and malignant
tissues in mpMR imaging of prostate cancer patients. For
each evaluation criteria, best performances are highlighted in
bold. The corresponding p-values of the comparison P-SVM
versus others are given in parenthesis and a superscript of star
indicates when P-SVM performs statistically better than others
at the 5% significance level.

Tables III, IV reports the results obtained using the scores
attributed by the radiologist of higher level of expertise as the
training labelling. Parameter η is set to 0.125, the sampling
interval.

First, we evaluate the performance achieved using the expert
analysis both as the learning labelling and test labelling,
thus assuming that the histological reference is unknown. As
can be seen in Table III, P-SVM achieves AUC=0.89 and
KL=43 compared with AUC=0.85 and KL=76 for SVM and
AUC=0.85 and KL=75 for F-SVM. These first results show
that P-SVM better reproduces the diagnosis of the expert
radiologist than do both the classical SVM and the F-SVM.
This implies that P-SVM might be a useful tool for a CAD
system that would be dedicated to training junior radiologists
for instance.

We then evaluate the performance achieved using the ex-
pert’s scores for learning and the histological ground truth
for testing. In that case, training data remains unchanged
but testing data correspond to the ROIs labelled ’+1’ or ’-
1’ using the histology as the ground truth. Results presented
in columns two to four of Table IV show that including
the expert’s uncertainty into the learning step balances the
influence of uncertain data and also allows achieving better
classification performances with respect to the histological
ground truth (AUC=0.86) than those achieved with classical

SVM (AUC=0.82; p <0.001) and the F-SVM (AUC=83; p
<0.001). In both cases, P-SVM outperforms SVM and F-SVM
in terms of classification (AUC) and probability prediction
performances (KL).

Another important result of this comparison is that classi-
fication performance in the ideal case where the histological
ground truth is available for training and testing a regular SVM
and those obtained by training P-SVM on the expert’s scores
(Table IV, column 1) are similar (AUC=0.86). This suggests
that the radiologist expertise could be sufficient to construct
a reliable classifier. This result however is strongly dependant
on the radiologist diagnostic expertise.

TABLE III: P-SVM, SVM+Platt and F-SVM+Platt perfor-
mances when trained and tested on scores of the radiologist
with the higher level of expertise (η=0.125, the sampling
interval).

Algorithm P-SVM SVM (p-value) F-SVM (p-value)

AUC 0.889* 0.845 (< 10−3) 0.847 (< 10−3)
Acc 0.909 0.905 (0.3) 0.900 (< 10−3)
KL 43.4* 75.7 (< 10−3) 74.6 (< 10−3)
ErrAl 0.256* 0.306 (< 10−3) 0.318 (< 10−3)

TABLE IV: P-SVM, SVM+Platt and F-SVM+Platt perfor-
mances when trained on scores of the radiologist with the
higher level of expertise (η=0.125, the sampling interval), and
tested with respect to the histology.

Algorithm P-SVM SVM (p-value) F-SVM (p-value)

AUC 0.857* 0.817 (< 10−3) 0.832 (< 10−3)
Acc 0.863* 0.857 (< 10−3) 0.854 (< 10−3)

The tissues discrimination performances obtained by com-
bining the scores from the four experts and using an adaptative
parameters ηi for each training ROI i depending on the inter-
experts’ variability are reported on Tables V and VI. For each
target i, we define pi as the average score values over all
experts and ηi = σi, the standard deviation of the scores. P-
SVM, F-SVM and SVM are trained on these newly defined
scores. Evaluation is performed either by considering the
scores (Table V) or the histology (Table VI) as the ground
truth. As we can see, classification performances reported in
Table VI are slightly improved compared to those in Table
IV but the gain is not significant for this specific application.
Nevertheless, this approach allows to obtain better probability
estimates with KL = 30.8 instead of KL = 43 with no
adaptation of η.

TABLE V: P-SVM, SVM+Platt and F-SVM+Platt perfor-
mances when trained and tested on the four experts’ scores
(average), using adaptative η (standard deviation of the scores).

Algorithm P-SVM SVM (p-value) F-SVM (p-value)

AUC 0.888* 0.861 (< 10−3) 0.876 (< 10−3)
Acc 0.883 0.868 (< 10−3) 0.880 (0.002)
KL 30.8* 59.6 (< 10−3) 56.5 (< 10−3)
ErrAl 0.189* 0.226 (< 10−3) 0.213 (< 10−3)
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TABLE VI: P-SVM, SVM+Platt and F-SVM+Platt perfor-
mances when trained on the four experts’ scores (average),
using adaptative η (standard deviation of the scores), and tested
with respect to the histology.

Algorithm P-SVM SVM (p-value) F-SVM (p-value)

AUC 0.862 0.847 (< 10−3) 0.861 (0.18)
Acc 0.863 0.857 (< 10−3) 0.860 (0.07)

VI. DISCUSSION AND PERSPECTIVES

The proposed method aims at learning a prediction function
that will both discriminate samples and be able to predict prob-
abilities. The approach can be easily extended to other kind of
prediction (non-probabilistic regression, multiclass prediction).
We proposed a generic approach to handle heterogeneous
labeled datasets, containing both quantitative and qualitative
labels. In this sense, we proposed a multitask method to
address a task of classification and a task of regression jointly
[21]. Note that the information between the different tasks
is shared in our framework through a common prediction
function whose prediction score is used for both tasks. It
seems interesting in future works to investigate other multitask
approaches where one function is learned per prediction task
and the information is shared through regularization [22].

The basic idea of P-SVM has been introduced in our
preliminary work [15]. In this paper, we generalized the
formulation for the optimization problem by introducing the
scaling parameter a, which can be either learnt or set a priori.
We proposed to use an adaptative η parameter depending on
the sample uncertainty rather than a global measure depending
on the labelling scale. Besides, performances are slightly
improved with the use of an adaptative η, set depending on
reader’s variability, when compared to a constant η value, set
depending on the labelling precision. Further study is required
to better understand the impact of both a and η. In this paper,
we also discussed a lot more comparative synthetic experi-
ments : we studied the impact of outliers on the prediction
function, the impact of the number of probabilistic labels
introduced in the training step, the influence of labelling noise
and introduced more evaluation criteria. We also proposed to
use our algorithm to solve a clinical problem using radiologists
scores as probabilitic inputs. At last, we compared the P-SVM
to two other state-of-the-art methods.

With both the synthetic and the clinical datasets, we showed
that the P-SVM classification and probability prediction per-
formances compared favorably with that of the standard SVM
and Fuzzy-SVM.

The synthetic examples allowed to show that the proposed
P-SVM behaves efficiently in presence of outliers or labelling
noise when compared to others methods. On the contrary,
regular SVM (combined with Platt’s algorithm) can’t integrate
any measure of uncertainty. It is thus very sensible to the
presence of outliers, which affect a lot the position of the
classification frontier, and is not robust to labelling noise. The
F-SVM formalism allows to weight the misclassification cost
using labelling uncertainty. The classification frontier is thus
less impacted with noise but the posterior class probability

predicted is unaccurate (and thus the uncertainty about the
prediction is lost. . . ).

In the clinical data example, it is interesting to notice
that the classification performances reached when training a
classical SVM on the histological ground truth are quasi-
equivalent to those obtained when training a P-SVM on the
experts’ scores. If these preliminary results are confirmed on
larger databases, this could open new perspectives for CAD
system design, especially in medical imaging. Indeed, con-
structing a training database based on the histological ground
truth is expensive, time consuming, fastidious and requires
anatomopathologists and radiologists to work in consensus to
register histological slices onto MR images. On the contrary,
using radiologists blind analysis (scores) would be much easier
and would thus allow to construct larger training databases.

The development of CAD systems able to assist radiologists
in their diagnostic task for prostate cancer detection on MR
images has gained interest in the past few years ([23], [24],
[25], [1], [26]). Most of theses prototypes rely on training
datasets of patients for which the histological ground truth
has been annotated following radical prostatectomy to garanty
a certain and binary labelling. Consequently, these datasets are
bound to be of limited size. Moroever, the study population
is limited to patients who underwent prostatectomy which
restrains the representativeness of the population under study.
Including the data of patients who underwent a radiological
exam but for whom no surgical treatment have been performed
could enhance this representativeness. We can thus consider
combining datasets for which the ground truth is either defined
with respect to the expertise of radiologists or to the histolog-
ical analysis of anatomopathologists (when the prostatectomy
specimen analysis is performed).

Note that for the synthetic experiments, we have only
showed the results of the algorithms when tested on con-
tinuously labelled datasets whereas our clinical dataset is
discrete since it uses the Likert scoring system [9]. We have
also tested and compared the different algorithms on discrete
synthetic datasets, this leading to the same conclusions. The
idea of the paper was to show that the proposed algorithm
can adapt to a large span of annotation scales and labelling
noises. In particular, the five-points Likert scale used by our
radiologists collaborators is not the only one, others prefer to
use a continuous 0− 100% scale (e.g. [27]).

Note that Doyle et al [28] tackle the problem of time and
effort dedicated to the construction of a training database
relying on the histological ground truth with another perspec-
tive. They introduce an intelligent labelling strategy which
aims at selecting only informative examples for annotation, ie.
those which would increase accuracy of the resulting trained
classifier. It would be an interesting idea to combine both
approaches to limit the effort dedicated to the annotation of a
training database by preselecting the samples of interest while
taking into account the uncertainty of some labels (scores) into
the learning process.

We can also note that some studies tackle the related
problem of learning a SVM classifier when the input vectors
{xi}i rather than the class labels are noisy. Bi and Zhang
[29], for instance, introduced an additive noise ∆, such that
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x′i = xi + ∆xi where noise ∆xi is constrained to be bounded
by δi; Yang and Gunn [30] modelled input data {xi}i with
gaussian distributions.

VII. CONCLUSION
We present a new way to take into account both qualitative

and quantitative target data by shrewdly combining both SVM
classification and regression loss. Experimental results show
that our formulation can perform very well on simulated data
for discrimination as well as posterior probability estimation.
We have also tested our approach on a clinical dataset thus
allowing to assess its usefulness in designing a computer-
assisted diagnosis system for prostate cancer. These results are
promising since they suggest that we could construct larger and
less expensive training database for our classifier by combining
samples labelled with respect to the histological ground truth
or the radiologic expertise, taking into account the radiologist’s
uncertainty instead of discarding it. Note that the proposed
framework, initially designed for probabilistic labels, can be
generalized to other problems involving both qualitative and
quantitative labels such as censored data.

VIII. APPENDIX

A. P-SVM dual formulation
The primal formulation introduced in III can be rewritten

into its dual form by introducing Lagrange multipliers α, µ+,
µ−, γ+, γ−. We are looking for a stationary point for the
Lagrange function L :

max
α,β,µ+,µ−,γ+,γ−

min
w,b,a,ξ,ξ+,ξ−

L (19)

where
L (w, b, a, ξ, α, β, ξ−, ξ+, µ−, µ+, γ−, γ+)

= 1
2‖w‖

2 + C

n∑
i=1

ξi + C̃

m∑
i=n+1

(ξ−i + ξ+
i )

−
n∑
i=1

αi(yi(w>xi + b)− (1− ξi))−
n∑
i=1

βiξi

−
m∑

i=n+1

µ−i ((w>xi + b)− (az−i − ξ
−
i ))−

m∑
i=n+1

γ−i ξ
−
i

−
m∑

i=n+1

µ+
i ((az+

i + ξ+
i )− (w>xi + b))−

m∑
i=n+1

γ+
i ν

+
i

with α ≥ 0, β ≥ 0, µ+ ≥ 0, µ− ≥ 0, γ+ ≥ 0 and γ− ≥ 0.

Computing the derivatives of L with respect to primal
parameters w, b, ξ, ξ− and ξ+ leads to the following optimality
conditions :

w =

n∑
i=1

αiyixi −
m∑

i=n+1

(µ+
i − µ

−
i )xi

n∑
i=1

αiyi =

m∑
i=n+1

(µ+
i − µ

−
i )

m∑
i=n+1

µ−i z
−
i =

m∑
i=n+1

µ+
i z

+
i

Ce1 = α+ β

C̃e2 = µ− + γ− = µ+ + γ+.

(20a)

(20b)

(20c)

(20d)

(20e)

where

e1 = [1 . . . 1︸ ︷︷ ︸
n times

0 . . . 0︸ ︷︷ ︸
(m− n) times

]> and e2 = [0 . . . 0︸ ︷︷ ︸
n times

1 . . . 1︸ ︷︷ ︸
(m− n) times

]>.

Calculations simplifications then lead to :

L(w, b, ξ, ξ−, ξ+, α, β, µ, γ+, γ−) =

− 1

2
w>w +

n∑
i=1

αi +

m∑
i=n+1

µ−i z
−
i −

m∑
i=n+1

µ+
i z

+
i . (21)

Knowing that β ≥ 0, γ+ ≥ 0, γ− ≥ 0, conditions (20d)
and (20e) become :{

0 ≤ αi ≤ C, i = 1...n

0 ≤ µ+
i , µ

−
i ≤ C̃, i = n+ 1...m.

Finally, let Γ = [α1 . . . αn µ
+
n+1 . . . µ

+
m µ−n+1 . . . µ

−
m]> be a

vector of dimension 2m− n. Then :

w>w = Γ> G Γwhere

G =

 K1 − K2 K2

− K>2 K3 − K3

K>2 − K3 K3


with

K1 = (yiyjx>i xj)i,j=1...n,
K2 = (x>i xjyi)i=1...n,j=n+1...m,
K3 = (x>i xj)i,j=n+1...m.

The dual formulation of the optimization problem becomes :

min
Γ

1
2Γ>GΓ− ẽ>Γ,

f>Γ = 0
g>Γ = 0

and 0 ≤ Γ ≤ [C . . . C︸ ︷︷ ︸
n times

C̃ . . . C̃︸ ︷︷ ︸
m−n times

C̃ . . . C̃︸ ︷︷ ︸
m−n times

]>

with Γ = [α1 . . . αn, µ
+
n+1 . . . µ

+
m, µ

−
n+1 . . . µ

−
m]>

ẽ = [1 . . . 1︸ ︷︷ ︸
n times

−z+
n+1 · · · − z+

m︸ ︷︷ ︸
m−n times

z−n+1 . . . z
−
m︸ ︷︷ ︸

m−n times

]

f> = [y>,−1 · · · − 1︸ ︷︷ ︸
m−n times

, 1 . . . 1︸ ︷︷ ︸
m−n times

]

g> = [0 . . . 0︸ ︷︷ ︸
n times

,−z+
n+1 · · · − z+

m︸ ︷︷ ︸
m−n times

z−n+1 . . . z
−
m︸ ︷︷ ︸

m−n times

]

(22)

B. Kernelization
The primal and dual formulations of the P-SVM problem

(Eqs. 15 and 22) can be easily generalized to non-linearly
separable data by introducing kernel functions. Let k be
a positive kernel satisfying Mercer’s condition and H the
associated Reproducing Kernel Hilbert Space (RKHS). Within
this framework, the primal formulation becomes

min
f∈H,

b,a,ξ,ξ−,ξ+∈R

1

2
‖f‖2H + C

n∑
i=1

ξi + C̃

m∑
i=n+1

(ξ−i + ξ+
i )

subject to
yif(xi) ≥ 1− ξi, i = 1...n
az−i − ξ

−
i ≤ f(xi) ≤ az+

i + ξ+
i , i = n+ 1...m

0 ≤ ξi, i = 1...n
0 ≤ ξ−i and 0 ≤ ξ+

i i = n+ 1...m
(23)
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The dual formulation remains identical, with
K1 = (yiyjk(xi, xj))i,j=1...n,
K2 = (k(xi, xj)yi)i=1...n,j=n+1...m,
K3 = (k(xi, xj))i,j=n+1...m,

C. Metrics

We present the metrics introduced in IV to evaluate the
prediction (class label and class probability) performances.
Classification performances are evaluated by computing :

• Area under the ROC curve (AUC), which is a global per-
formance measure expressing the compromise between
sensitivity and specificity,

• Accuracy (Acc), which represents the good classification
rate when a specific threshold is applied to the classifier
output,

Acc =
True positives + True negatives

Total number of samples
.

Probability estimation performances are evaluated by comput-
ing two metrics that express a dissimilarity measure between
two probability distributions P (ground truth) and Q (esti-
mated) :

• Kullback Leibler distance (KL) (or relative entropy),
which is a measure of the information lost when Q is
used to approximate P ,

KL(P ||Q) =

n∑
i=1

P (Yi = 1|xi) log

(
P (Yi = 1|xi)
Q(Yi = 1|xi)

)
,

• Alignment error (ErrAl), which can be assimilated to the
inner product and measures how the distributions are
misaligned,

ErrAl = 1−

n∑
i=1

P (Yi = 1|xi)Q(Yi = 1|xi)√∑
i P (Yi = 1|xi)2

√∑
iQ(Yi = 1|xi)2

.
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